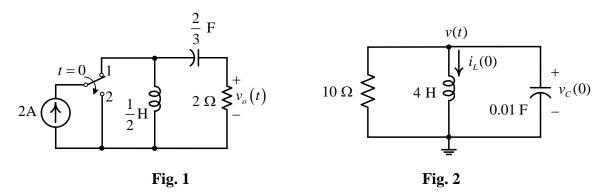
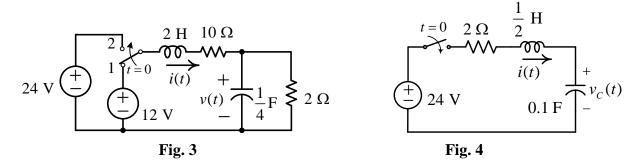
電路學 (一) 第四次測驗 四電機二 A 2018年1月11日 (星期四)

- 1) 滿分 100 分, 考試時間 2 小時。
- 2) 答案應有正確之數值與單位。
- 3) 可使用計算器,但<u>不得</u>使用電腦、行動電話等通訊器材。<u>不得</u>參閱任何書本及筆記。
- 4) 請確實遵守考試規則,違反考試規則者,依本校校規處置。
- 1. The switch in the circuit shown in **Fig. 1** moves from position 1 to position 2 at t=0. Find $v_o(t)$ for t>0. (20%)
- 2. In the critically damped circuit of **Fig. 2**, the initial conditions are $i_L(0)=2$ A and $v_C(0)=5$ V. Find the voltage v(t), for t>0. (20%)



- 3. The circuit of **Fig. 3** has been in steady-state before the switch moves from position 1 to position 2 at t=0. Find the voltage v(t) for t>0. (20%)
- 4. The switch in the circuit of **Fig. 4** closes at t = 0. If all the initial conditions are zero, find $v_C(t)$ for t > 0. (20%)



5. Three branch currents in a network are known to be

$$i_1(t) = 2\sin(377t + 45^\circ) \text{ A},$$

$$i_2(t) = 0.5\cos(377t + 10^\circ) \text{ A},$$

$$i_3(t) = -0.25 \sin(377t + 60^\circ) \text{ A}$$
.

Determine the phase angles by which $i_1(t)$ leads $i_2(t)$, and $i_1(t)$ leads $i_3(t)$. (20%)

Possible solutions to the final exam, 11th January 2018

1. After the switch moves from position 1 to 2, the problem becomes solving a series R-L-C circuit without source, given the initial conditions $i_L(0)=2$ A and $v_C(0)=0$. The KVL equation can be written as $\frac{1}{2}\frac{di_L}{dt} + 2i_L + v_C = 0$, with

$$\begin{array}{c|c}
\frac{2}{3} & F \\
t = 0 & 1 & -v_c \\
2 & \frac{1}{2} &$$

$$\frac{1}{2}\frac{dv_L}{dt} + 2i_L + v_C$$
$$i_L = \frac{2}{3}\frac{dv_C}{dt}.$$

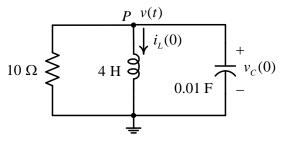
Combining the above two equations yields a 2nd-order ODE*

 $\frac{1}{3}\frac{d^2v_C}{dt^2} + \frac{4}{3}\frac{dv_C}{dt} + v_C = 0$, which allows the characteristic equation to be obtained as $s^2 + 4s + 3 = (s+1)(s+3) = 0$. The natural frequencies are then s=-1 and s=-3 s⁻¹.

The current i_L can be assumed to be $i_L = Ae^{-t} + Be^{-3t}$. With the initial condition, we obtain the 1st equation $i_L(0)=2=A+B$. The 2nd equation is given by

 $\frac{di_L}{dt}\Big|_{t=0} = -A - 3B = -4i_L(0) - 2v_C(0) = -8$. Solving the two equations of A and B gives A=-1 and $B=3. \implies i_L = -e^{-t} + 3e^{-3t} \quad A \implies v_o = -2i_L = 2e^{-t} - 6e^{-3t} \quad V, t > 0.$

2. Writing the KCL equation at node P yields $\frac{v}{10} + i_L + 0.01 \frac{dv}{dt} = 0$. Substituting $v = 4 \frac{di_L}{dt}$ to the KCL equation gives a 2nd-order ODE $\frac{d^2i_L}{dt} + 10 \frac{di_L}{dt} + 25 = 0$ which gives the short of the state $v = 4 \frac{di_L}{dt}$. $\frac{d^2i_L}{dt^2} + 10\frac{di_L}{dt} + 25 = 0$, which gives the characteristic

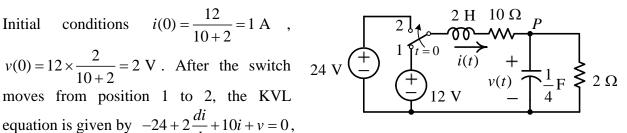


equation $s^2 + 10s + 25 = (s+5)^2 = 0$. A repeated root of s=-5 s⁻¹ is found. The circuit is hence critically damped, and v(t) must have the form $v = Ae^{-5t} + Bte^{-5t}$.

$$v(0) = A = 5, \quad 0.01 \frac{dv}{dt}\Big|_{t=0} = 0.01 \left(-5A + B\right) = -\left(i_L(0) + \frac{v(0)}{10}\right) = -2.5 \Rightarrow B = -225$$

$$v = 5e^{-5t} - 225te^{-5t} \text{ V}, \ t > 0.$$

3. Initial conditions $i(0) = \frac{12}{10 + 2} = 1 \text{ A}$, equation is given by $-24 + 2\frac{di}{dt} + 10i + v = 0$,



and the KCL equation at node P is $i = \frac{1}{4} \frac{dv}{dt} + \frac{v}{2}$. Substitution of i in KCL for i in KVL gives a 2nd-order ODE of v

^{*} ODE: ordinary differential equation 常微分方程式

 $\frac{d^2v}{dt^2} + 7\frac{dv}{dt} + 12v = 48$ with the characteristic equation $s^2 + 7s + 12 = (s+3)(s+4) = 0$. The voltage v(t) must have the form $v = Ae^{-3t} + Be^{-4t} + k_n$

The final value
$$v(\infty) = 24 \times \frac{2}{10+2} = 4 \text{ V} = k_p$$
.

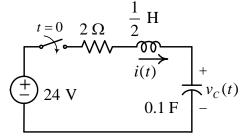
The initial value $v(0) = 2 = A + B + 4 \Rightarrow A + B = -2$

The initial value
$$i(0) = 1 = \frac{1}{4} \frac{dv}{dt}\Big|_{t=0} + \frac{v(0)}{2} = \frac{1}{4} (-3A - 4B) + \frac{2}{2} \Rightarrow 3A + 4B = 0$$

Solving for *A* and *B* yields A=-8, B=6. $v = -8e^{-3t} + 6e^{-4t} + 4$ V, t>0

4. The KVL equation is given by $-24 + 2i + \frac{1}{2} \frac{di}{dt} + v_C = 0$.

The current i can be expressed as $i = 0.1 \frac{dv_C}{dt}$, which allows the KVL equation to be written as a 2nd-order ODE $\frac{1}{2} \frac{di}{dt} + v_C = 0$ $\frac{1}{2} \frac{di}{dt} + v_C = 0$ $\frac{d^2v_C}{dt^2} + 4\frac{dv_C}{dt} + 20v_C = 480.$



The characteristic equation is $s^2 + 4s + 20 = 0 \Rightarrow s = -2 \pm j4 \text{ s}^{-1}$. The capacitor voltage v_C must have the form $v_C = e^{-2t} (A\cos 4t + B\sin 4t) + k_p$.

The final value
$$v_C(\infty) = 24 = k_p$$
.

The initial value
$$v_C(0) = 0 = A + 24 \Rightarrow A = -24$$
.

The initial value
$$i(0) = 0 = 0.1 \frac{dv_C}{dt}\Big|_{t=0} \Rightarrow -2A + 4B = 0 \Rightarrow B = -12$$

 $v_C = -e^{-2t} (24\cos 4t + 12\sin 4t) + 24 \text{ V}, t > 0$

5. Transform all the currents in cosine functions.

$$i_1(t) = 2\sin(377t + 45^\circ) = 2\cos(377t + 45^\circ - 90^\circ) = 2\cos(377t - 45^\circ)$$
 A

$$i_2(t) = 0.5\cos(377t + 10^\circ) \text{ A}$$

$$i_3(t) = -0.25 \sin(377t + 60^\circ) = -0.25 \cos(377t + 60^\circ - 90^\circ)$$
$$= 0.25 \cos(377t + 60^\circ - 90^\circ + 180^\circ) = 0.25 \cos(377t + 150^\circ) A$$

$$i_1(t)$$
 leads $i_2(t)$ by $-45^{\circ}-10^{\circ}=-55^{\circ}$,

$$i_1(t)$$
 leads $i_3(t)$ by $-45^{\circ}-150^{\circ} = -195^{\circ}$ or by $-195^{\circ}+360^{\circ}=165^{\circ}$